Chromatic Distribution affects Color Constancy
Marcel Lucassen, Arjan Gijsenij, Theo Gevers
Intelligent Systems Lab Amsterdam, University of Amsterdam, The Netherlands

1. Abstract

Does chromatic distribution matter in color constancy experiments?

We asked observers to judge color constancy of test patterns varying in average chromaticity and chromatic distribution. Four illuminants were used to simulate illumination of the color patches. Stimuli were presented on a calibrated color monitor.

In a paired-comparison, our observers judged the color fidelity of the patterns under two illuminants compared to patterns under neutral reference illumination. They indicated which of the two illuminants showed better color constancy.

Our results show that color constancy is best when the dominant axis of the chromatic distribution is parallel to the direction of the illuminant change.

In conclusion, color constancy depends on the chromatic distribution of the scene.

2. Test Patterns

- Images were composed of 900 patches varying in CIE L*a*b* values. Both the average chromaticity and the chromatic distribution were varied. The 2D Gaussian distribution of a*b* values was either circular, or ellipsoid with the variance in a* 5 times that in b*, or vice versa.

- Smoothest reflectance functions were calculated for each patch.

3. Illuminants

- Illuminants were created with CIE daylight basis functions. Both the average chromaticity and the chromatic distribution were varied. The 2D Gaussian distribution of a*b* values was either circular, or ellipsoid with the variance in a* 5 times that in b*, or vice versa.

- D65 used as reference illuminant
- Red, Green, Yellow, Blue as test illuminants
- Approximately equally distant from the neutral point (= 12 ΔEab)

4. Psychophysical Experiment

- Test pattern under illuminant i (R,G,Y or B)
- Test pattern under illuminant j (R,G,Y or B), j ≠ i
- 5 observers indicated which illuminant gives best color constancy (compared to D65)

- Visual score
- Chromatic distribution: σa* = σb*
- Chromatic distribution: σa* = 5 σb*
- Chromatic distribution: σa*/5

5. Results

- Color constancy
 1) depends on the chromatic distribution of the test pattern;
 2) is best when the major axis of the chromatic distribution is parallel to the direction of the illuminant change.

6. Conclusions