Color classification of veal carcasses: Past, present and future

Marcel Lucassen

Johan Alferdinck

Ron van Megen
From the farm to the table
Carcass classification

Veal carcasses are classified on

• Fatness (amount of fat tissue)
• Conformation (size and weight)
• Color

Color is an important factor for pricing

The color classification process is reviewed here
Past: visual classification

• Meat color was visually matched to a 10-point scale

• Scale design based on representative variations in meat color
Past: visual classification

- Visual task: determine the smallest difference

- Disadvantages:
 - Subjective
 - Dependent on illumination
Past: instrumental classification

Certified personnel perform on-line color measurements in the slaughterhouses.
Past: instrumental classification

- Handheld Minolta CR300 (tristimulus meter)
- Positioned on the *m. Rectus abdominis* (*vinkelap*)
- Measurement of CIE X,Y,Z
- 45 min post mortem
Past: instrumental classification

- Algorithm derived from database with both visual and instrumental measurements
- Discriminant analysis: calculates the most likely color class using functions based on measured L^* and a^* values

Measured CIE X, Y, Z

Conversion algorithm

Color class 1..10
Past: instrumental classification

> 80% within 1 color class difference
Present: update hardware & software

- Tristimulus meters replaced by newer version

Minolta CR300 Minolta CR400
Present: update hardware & software

• Improved calibration procedure (user calibration), using additional tile with representative target color
Present: update hardware & software
Present: update hardware & software

- New datasets:
 - instrumental only $n=113,556$
 - instrumental + visual $n=11,745$

Restricted area in CIELAB color space
Present: update hardware & software

• New algorithm to convert color measurement to a color class, based on ΔE_{94} color difference metric

• Finds minimum color distance to new, virtual color scale

![Diagram showing color classes and their corresponding ΔE values. The diagram includes a virtual color scale and a meat section with color differences indicated.]
Present: update hardware & software

- New algorithm is attuned to historical databases
Present: update hardware & software

- Good agreement with visual data

![Graph showing relative frequency of color classes with n=11745](image)
Main advantages ΔE-based method

1. Works similar to visual classification: it determines the smallest difference to reference colors
2. Easy to explain and comprehend
3. Does not require complex statistical analysis
4. Less sensitive to small variations in color measurements
5. ΔE is an international / industrial standard
Future perspective

- LED illumination in color measurement equipment: longer life-time, less calibration efforts

- Operational research: local factors (temperature, humidity, animal stress, etc) affecting the color measurement?

- Camera based, non-contact color measurement
Color classification of veal carcasses: Past, present and future

Marcel Lucassen

Johan Alferdinck

Ron van Megen